Solutions were apparently stable at room temperature for at least one week. Reproducible data were obtained only if this procedure was followed.

Acknowledgment.—This investigation was conducted with the assistance of grants-in-aid from the following organizations: American Can Company, Maywood, Illinois; Dow Chemical Company, Midland, Michigan; Nestlé Company, New York, New York; Pillsbury Mills, Inc., Minneapolis, Minnesota; Standard Brands, Inc., New York, New York; Wilson & Company, Chicago, Illinois.

Department of Food Technology
Massachusetts Institute of Technology
Cambridge, Mass. Received September 25, 1950

Some Alkanesulfinic Acids and their Derivatives¹

By C. S. MARVEL AND N. A. MEINHARDT

In connection with a study of alkanesulfinic acids as activators in an oxidation-reduction type polymerization recipe² we have had occasion to prepare

the C₈ to C₁₈ even-numbered carbon straight-chain members of the alkanesulfinic acid series and have characterized them with derivatives. The methods of preparation for the acids and derivatives are those recently described for 1-dodecanesulfinic acid.³

1-Octanesulfinic acid and 1-decanesulfinic acid are low melting and rapidly become colored in air. They obviously oxidize and/or rearrange very quickly and they have only been prepared in a crude state. Their derivatives, however, have been obtained as pure crystalline compounds.

Experimental.—The magnesium salts of the alkanesulfinic acids were prepared by the method of Houlton and Tartar⁴ and converted into the various derivatives by standard methods.³ The results of the work are presented in the tables.

This series of compounds is unstable and decomposes on standing for a few days. This makes their analysis unsatisfactory.

Table I Alkanesulfinic Acids RSO₂H

Yield of acid from Mg salt.			Carbon		Analyses, % Hydrogen		Sulfur				
Decane	from Mg salt,	M. p., °C.	Calcd.	Found	Calcd.	Found	Calcd.	Found			
1-Tetra-	65.5	48-48.4	64.12	64.46	11.43	11.51	12.2	12.06			
1-Hexa-	58	54-55	66.21	65.90	11.71	11.58	11.05	11.15			
1-Octa.	69.2	60-60.5	67.92	67.68	11.94	12.14	10.05	10.20			

 $\label{thm:local_transform} Table~II\\ N, N-Di-(1-alkanesulfonyl)-hydroxylamines~(RSO_2)_2NOH$

	Yield based on		Analyses, %						
	sodium salt,	36 - 00	Carbon		Hydrogen		Nitrogen		
	%	M. p., °C.	Calcd.	Found	Calcd.	Found	Calcd.	Found	
1-Octane	77.1	64-65	49.9	50.02	9.09	9.20	3.64	3.43	
1-Decane	91.8	6869	54.44	54.76	9.73	9.45	3.18	3.06	
1-Tetradecane	90	74-75	60.75	60.77	10.68	10.77	2.53	2.45	
1-Hexadecane	77	75-75.5	63.1	62.87	11.00	10.83	2.30	2.16	
1-Octadecane	78.8	83-84	65.00	65.25	11.28	11.10	2.10	2.06	

TABLE III

O-ACETYL-N, N-DI-(1-ALKANESULFONYL)-HYDROXYLAMINES (RSO₂)₂NOCOCH₃

	Yield based on hydroxylamine,		Analyses, % Carbon Hydrogen N					Titrogen	
	%	M. p., °C.	Calcd.	Found	Calcd.	Found	Calcd.	Found	
1-Octane	65.6	24-25	5 0.58	50 .19	8.66	8.6	3.29	3.00	
1-Decane	72.3	43-45	54.66	54 .45	9.31	9.66	2.90	2.69	
1-Tetradecane	62	54-57.5	60.49	61.25	10.25	10.75	2.35	2.42	
1-Hexadecane	65.9	74-75	62.66	63.05	10.59	11.32	2.14	2.19	
1-Octadecane	70.4	78–79	64.5	65.10	10.89	11.39	1.98	2.27	

Table IV

TRI-(1-ALKANESULFONYL)-AMINE OXIDES (RSO2)2NO

		Analyses, %							
	М. р., °С.	Carbon		Hyd	rogen				
	°C.	Calcd.	Found	Calcd.	Found	Calcd.	Found		
1-Octane	39-40	51.3	51.14	9.26	8.90	2.49	2.76		
1-Decane	47-48	55.8	55.86	9.77	9.57	2.17	2.35		
1-Tetradecane	69-70	62.0	62.3	10.70	10.45	1.72	1.76		
1-Hexadecane	74.5-76	64.25	64.3	11.02	11.25	1.56	1.74		
1-Octadecane	76-77	66.06	66.10	11.31	11.49	1.43	1.64		

⁽¹⁾ This investigation was carried out under the sponsorship of the Office of Rubber Reserve, Reconstruction Finance Corporation, in connection with the U. S. Government Synthetic Rubber Program.

TABLE V

	Yield based on		Analyses, %-				
	sodium salt, %	\mathbf{M}° C'		rbon Found		rogen Found	
1-Octane	82	95-96	50.9	51.2	8.47	8.57	
1-Decane	52.6	102-103.5	54.6	54.73	9.09	9.09	
1-Tetradecane	47.7	110-111	60.0	60.10	10.00	9.91	
1-Hexadecane	47.5	113-114	62.1	62.18	10.34	10.43	

116-117

1-ALKANESULFONYLACETIC ACIDS RSO₂CH₂CO₂H

NOVES CHEMICAL LABORATORY

45

University of Illinois

1-Octadecane

URBANA, ILLINOIS RECEIVED SEPTEMBER 11, 1950

63.8 64.49 10.62 10.69

⁽²⁾ Office of the Publication Board, U. S. Department of Commerce, Item P. B. No. 1636—Activation of Buna-S Polymerization in Mersolat Emulsion with Reducing Agents, Sherlock Swann, Jr., and N. M. Bliss.

⁽³⁾ C. S. Marvel and R. S. Johnson, J. Org. Chem., 13, 822 (1948).
(4) H. G. Houlton and H. V. Tartar, This Journal, 60, 544 (1938).